Gold nanoparticle-catalyzed environmentally benign deoxygenation of epoxides to alkenes.

نویسندگان

  • Akifumi Noujima
  • Takato Mitsudome
  • Tomoo Mizugaki
  • Koichiro Jitsukawa
  • Kiyotomi Kaneda
چکیده

We have developed a highly efficient and green catalytic deoxygenation of epoxides to alkenes using gold nanoparticles (NPs) supported on hydrotalcite [HT: Mg(6)Al(2)CO(3)(OH)(16)] (Au/HT) with alcohols, CO/H(2)O or H(2) as the reducing reagent. Various epoxides were selectively converted to the corresponding alkenes. Among the novel metal NPs on HT, Au/HT was found to exhibit outstanding catalytic activity for the deoxygenation reaction. Moreover, Au/HT can be separated from the reaction mixture and reused with retention of its catalytic activity and selectivity. The high catalytic performance of Au/HT was attributed to the selective formation of Au-hydride species by the cooperative effect between Au NPs and HT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400

Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...

متن کامل

Mild and efficient CO-mediated eliminative deoxygenation of epoxides catalyzed by supported gold nanoparticles.

Supported gold nanoparticles (NPs), which are well-known epoxidation catalysts, were found to be exceptionally active for the selective deoxygenation of epoxides into alkenes using cheap and easily accessible CO and H(2)O as the reductant.

متن کامل

Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite.

In this review, we describe the development by our research group of highly functionalized heterogeneous Olympic medal metal (gold, silver, and copper) nanoparticle catalysts using hydrotalcite as a support, aimed towards Green and Sustainable Chemistry. Olympic medal metal nanoparticles can cooperate with the basic sites on the hydrotalcite surface, providing unique and high performance cataly...

متن کامل

Regioselective conversion of epoxides to vicinal nitrohydrins catalyzed by silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as a green and reusable catalyst under aqueous thermal conditions

An environmentally benign procedure for the synthesis of vicinal nitrohydrins via the regioselective ring opening reaction of epoxides with nitrite anion using silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as an effective heterogeneous phase transfer catalyst was described. Short reaction time, high yield of products, simple work-up proc...

متن کامل

Regioselective conversion of epoxides to vicinal nitrohydrins catalyzed by silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as a green and reusable catalyst under aqueous thermal conditions

An environmentally benign procedure for the synthesis of vicinal nitrohydrins via the regioselective ring opening reaction of epoxides with nitrite anion using silica-bound 3-{2-[poly(ethylene glycol)]ethyl}-substituted 1-methyl-1H-imidazol-3-ium bromide as an effective heterogeneous phase transfer catalyst was described. Short reaction time, high yield of products, simple work-up proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 2011